login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001334 Number of n-step self-avoiding walks on hexagonal [ =triangular ] lattice.
(Formerly M4197 N1751)
23
1, 6, 30, 138, 618, 2730, 11946, 51882, 224130, 964134, 4133166, 17668938, 75355206, 320734686, 1362791250, 5781765582, 24497330322, 103673967882, 438296739594, 1851231376374, 7812439620678, 32944292555934, 138825972053046 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
The hexagonal lattice is the familiar 2-dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice.
REFERENCES
A. J. Guttmann, Asymptotic analysis of power-series expansions, pp. 1-234 of C. Domb and J. L. Lebowitz, editors, Phase Transitions and Critical Phenomena. Vol. 13, Academic Press, NY, 1989.
B. D. Hughes, Random Walks and Random Environments, Oxford 1995, vol. 1, p. 459.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
I. Jensen, Table of n, a(n) for n = 0..40 (from the Jensen link below)
Sergio Caracciolo, Anthony J. Guttmann, Iwan Jensen, Andrea Pelissetto, Andrew N. Rogers, Alan D. Sokal, Correction-to-Scaling Exponents for Two-Dimensional Self-Avoiding Walks, Journal of Statistical Physics, September 2005, Volume 120, Issue 5, pp. 1037-1100.
M. E. Fisher and M. F. Sykes, Excluded-volume problem and the Ising model of ferromagnetism, Phys. Rev. 114 (1959), 45-58.
A. J. Guttmann, Asymptotic analysis of power-series expansions, pp. 1-13, 56-57, 142-143, 150-151 from of C. Domb and J. L. Lebowitz, editors, Phase Transitions and Critical Phenomena. Vol. 13, Academic Press, NY, 1989. (Annotated scanned copy)
A. J. Guttmann and J. Wang, The extension of self-avoiding random walk series in two dimensions, J. Phys. A 24 (1991), 3107-3109.
B. D. Hughes, Random Walks and Random Environments, vol. 1, Oxford 1995, Tables and references for self-avoiding walks counts [Annotated scanned copy of several pages of a preprint or a draft of chapter 7 "The self-avoiding walk"]
J. L. Martin, M. F. Sykes and F. T. Hioe, Probability of initial ring closure for self-avoiding walks on the face-centered cubic and triangular lattices, J. Chem. Phys., 46 (1967), 3478-3481.
S. Redner, Distribution functions in the interior of polymer chains, J. Phys. A 13 (1980), 3525-3541, doi:10.1088/0305-4470/13/11/023.
Joris van der Hoeven, On asymptotic extrapolation, Journal of symbolic computation, 2009, p. 1010.
MATHEMATICA
mo={{2, 0}, {-1, 1}, {-1, -1}, {-2, 0}, {1, -1}, {1, 1}}; a[0]=1;
a[tg_, p_:{{0, 0}}] := Block[{e, mv = Complement[Last[p]+# & /@ mo, p]}, If[tg == 1, Length@mv, Sum[a[tg-1, Append[p, e]], {e, mv}]]];
a /@ Range[0, 6]
(* Robert FERREOL, Nov 28 2018; after the program of Giovanni Resta in A001411 *)
PROG
(Python)
def add(L, x):
M=[y for y in L]; M.append(x)
return(M)
plus=lambda L, M : [x+y for x, y in zip(L, M)]
mo=[[2, 0], [-1, 1], [-1, -1], [-2, 0], [1, -1], [1, 1]]
def a(n, P=[[0, 0]]):
if n==0: return(1)
mv1 = [plus(P[-1], x) for x in mo]
mv2=[x for x in mv1 if x not in P]
if n==1: return(len(mv2))
else: return(sum(a(n-1, add(P, x)) for x in mv2))
[a(n) for n in range(11)]
# Robert FERREOL, Dec 11 2018
CROSSREFS
Sequence in context: A002920 A255463 A192208 * A125316 A092439 A082149
KEYWORD
nonn,walk,nice
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 28 13:13 EDT 2024. Contains 372086 sequences. (Running on oeis4.)