The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000682 Semi-meanders: number of ways a semi-infinite directed curve can cross a straight line n times.
(Formerly M1205 N0464)
34

%I M1205 N0464 #189 Jun 16 2023 03:16:13

%S 1,1,2,4,10,24,66,174,504,1406,4210,12198,37378,111278,346846,1053874,

%T 3328188,10274466,32786630,102511418,329903058,1042277722,3377919260,

%U 10765024432,35095839848,112670468128,369192702554,1192724674590,3925446804750

%N Semi-meanders: number of ways a semi-infinite directed curve can cross a straight line n times.

%C For n > 1, the number of permutations of n letters without overlaps [Sade, 1949]. - _N. J. A. Sloane_, Jul 05 2015

%C Number of ways to fold a strip of n labeled stamps with leaf 1 on top. [Clarified by _Stéphane Legendre_, Apr 09 2013]

%C From _Roger Ford_, Jul 04 2014: (Start)

%C The number of semi-meander solutions for n (a(n)) is equal to the number of n top arch solutions in the intersection of A001263 (with no intersecting top arches) and A244312 (arches forming a complete loop).

%C The top and bottom arches for semi-meanders pass through vertices 1-2n on a straight line with the arches below the line forming a rainbow pattern.

%C The number of total arches going from an odd vertex to a higher even vertex must be exactly 2 greater than the number of arches going from an even vertex to a higher odd vertex to form a single complete loop with no intersections.

%C The arch solutions in the intersection of A001263 (T(n,k)) and A244312 (F(n,k)) occur when the number of top arches going from an odd vertex to a higher even vertex (k) meets the condition that k = ceiling((n+1)/2).

%C Example: semi-meanders a(5)=10.

%C (A244312) F(5,3)=16 { 10 common solutions: [12,34,5 10,67,89] [16,23,45,78,9 10] [12,36,45,7 10,89] [14,23,58,67,9 10] [12,3 10,49,58,67] [18,27,36,45,9 10] [12,3 10,45,69,78] [18,25,34,67,9 10] [14,23,5 10,69,78] [16,25,34,7 10,89] } + [18,27,34,5 10,69] [16,25,3 10,49,78] [18,25,36,49,7 10] [14,27,3 10,58,69] [14,27,36,5 10,89] [16,23,49,58,7 10]

%C (A001263) T(5,3)=20 { 10 common solutions } + [12,38,45,67,9 10] [1 10,29,38,47,56] [1 10,25,34,69,78] [14,23,56,7 10,89] [12,3 10,47,56,89] [18,23,47,56,9 10] [1 10,29,36,45,78] [1 10,29,34,58,67] [1 10,27,34,56,89] [1 10,23,49,56,78].

%C (End)

%C From _Roger Ford_, Feb 23 2018: (Start)

%C For n>1, the number of semi-meanders with n top arches and k concentric starting arcs is a(n,k)= A000682(n-k).

%C /\ /\

%C Examples: a(5,1)=4 //\\ / \ /\

%C A000682(5-1)=4 ///\\\ / /\\ / \ /\ /\

%C /\////\\\\, /\//\//\\\, /\/\//\/\\, /\ //\\//\\

%C a(5,2)=2 /\ a(5,3)=1 /\

%C A000682(5-2)=2 /\ //\\ /\ /\ A000682(5-3)=1 //\\ /\

%C //\\///\\\, //\\//\\/\ ///\\\//\\

%C a(5,4)=1 /\

%C A000682(5-4)=1 //\\

%C ///\\\

%C ////\\\\/\. (End)

%C For n >= 4, 4*a(n-2) is the number of stamp foldings with leaf 1 on top, with leaf 2 in the second or n-th position, and with leaf n and leaf n-1 adjacent. Example for n = 5, 4*a(5-2) = 8: 12345, 12354, 12453, 12543, 13452, 13542, 14532, 15432. - _Roger Ford_, Aug 05 2019

%C From _Martin Philp_, Mar 25 2021: (Start)

%C The condition of having leaf n and leaf n-1 adjacent is the same as having one fewer leaf, and then counting each element twice. So the above comment is equivalent to saying:

%C For n >= 3, 2*a(n-1) is the number of stamp foldings with leaf 1 on top and leaf 2 in the second or n-th position. Example for n = 4, 2*a(4-1) = 4: 1234, 1243, 1342, 1432. Furthermore the number of stamp foldings with leaf 1 on top and leaf 2 in the n-th position is the same as the number of stamp foldings with leaf 1 on top and leaf 2 in the second position, as a cyclic rotation of 1 and mirroring the sequence maps one to the other. 1234, 1243 <-rot-> 2341, 2431 <-mirror-> 1432, 1342.

%C Hence, for n >= 2, a(n-1) is the number of stamp foldings having 1 and 2 (in this order) on top.

%C Not only is a(n) the number of stamp foldings with 1 on top, it is the number of stamp foldings with any particular leaf on top. This explains why A000136(n)= n*a(n).

%C (End)

%C The number of semi-meanders that in the first exterior top arch has exactly one arch of length one = Sum_{k=1..n-1} a(k). Example: for n = 5, Sum_{k=1..4} A000682(k) = 8, 10 = arch of length one, *start and end of first exterior top arch*; *10*11001100, *10*11110000, *10*11011000, *10*10110100, *1100*111000, *1100*110010, *111000*1100, *11110000*10. - _Roger Ford_, Jul 12 2020

%D A. Sade, Sur les Chevauchements des Permutations, published by the author, Marseille, 1949.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H I. Jensen, <a href="/A000682/b000682.txt">Table of n, a(n) for n = 1..45</a>

%H CombOS - Combinatorial Object Server, <a href="http://combos.org/meander">Generate meanders and stamp foldings</a>

%H P. Di Francesco, O. Golinelli and E. Guitter, <a href="https://arxiv.org/abs/hep-th/9506030">Meander, folding and arch statistics</a>, arXiv:hep-th/9506030, 1995.

%H P. Di Francesco, O. Golinelli and E. Guitter, <a href="http://arXiv.org/abs/hep-th/9607039">Meanders: a direct enumeration approach</a>, arXiv:hep-th/9607039, 1996; Nucl. Phys. B 482 [ FS ] (1996) 497-535.

%H P. Di Francesco, <a href="http://arXiv.org/abs/math-ph/9911002">Matrix model combinatorics: applications to folding and coloring</a>, arXiv:math-ph/9911002, 1999.

%H I. Jensen, <a href="http://www.ms.unimelb.edu.au/~iwan/">Home page</a>

%H I. Jensen, <a href="https://web.archive.org/web/20190419141113/https://researchers.ms.unimelb.edu.au/~ij@unimelb/meanders/series/semi.meanders.ser">Terms a(1)..a(45)</a>

%H I. Jensen, <a href="http://dx.doi.org/10.1088/0305-4470/33/34/301">A transfer matrix approach to the enumeration of plane meanders</a>, J. Phys. A 33, 5953-5963 (2000).

%H I. Jensen and A. J. Guttmann, <a href="http://dx.doi.org/10.1088/0305-4470/33/21/101">Critical exponents of plane meanders</a> J. Phys. A 33, L187-L192 (2000).

%H J. E. Koehler, <a href="http://dx.doi.org/10.1016/S0021-9800(68)80048-1">Folding a strip of stamps</a>, J. Combin. Theory, 5 (1968), 135-152.

%H J. E. Koehler, <a href="/A001011/a001011_4.pdf">Folding a strip of stamps</a>, J. Combin. Theory, 5 (1968), 135-152. [Annotated, corrected, scanned copy]

%H M. La Croix, <a href="http://www.math.uwaterloo.ca/~malacroi/Latex/Meanders.pdf"> Approaches to the Enumerative Theory of Meanders</a>

%H Stéphane Legendre, <a href="http://arxiv.org/abs/1302.2025">Foldings and Meanders</a>, arXiv preprint arXiv:1302.2025 [math.CO], 2013.

%H Stéphane Legendre, <a href="/A000682/a000682.pdf">Illustration of initial terms</a>

%H W. F. Lunnon, <a href="http://dx.doi.org/10.1090/S0025-5718-1968-0221957-8">A map-folding problem</a>, Math. Comp. 22 (1968), 193-199.

%H A. Panayotopoulos, P. Vlamos, <a href="https://doi.org/10.1007/s11786-015-0234-0">Partitioning the Meandering Curves</a>, Mathematics in Computer Science (2015) p 1-10.

%H Albert Sade, <a href="/A000108/a000108_17.pdf">Sur les Chevauchements des Permutations</a>, published by the author, Marseille, 1949. [Annotated scanned copy]

%H J. Sawada and R. Li, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v19i2p43">Stamp foldings, semi-meanders, and open meanders: fast generation algorithms</a>, Electronic Journal of Combinatorics, Volume 19 No. 2 (2012), P#43 (16 pages).

%H J. Touchard, <a href="http://dx.doi.org/10.4153/CJM-1950-035-6">Contributions à l'étude du problème des timbres poste</a>, Canad. J. Math., 2 (1950), 385-398.

%H <a href="/index/Fo#fold">Index entries for sequences obtained by enumerating foldings</a>

%F For n >= 2, a(n) = 2^(n-2) + Sum_{x=3..n-2} (2^(n-x-2)*A301620(x)). - _Roger Ford_, Apr 23 2018

%F a(n) = 2^(n-2) + Sum_{j=4..n-1} (Sum_{k=3..floor((j+2)/2)} (A259689(j,k)*(k-2)*2^(n-1-j))). - _Roger Ford_, Dec 12 2018

%F a(n) = A000136(n)/n. - _Jean-François Alcover_, Sep 06 2019, from formula in A000136.

%e a(4) = 4: the four solutions with three crossings are the two solutions shown in A086441(3) together with their reflections about a North-South axis.

%t A000136 = Import["https://oeis.org/A000136/b000136.txt", "Table"][[All, 2]];

%t a[n_] := A000136[[n]]/n;

%t Array[a, 45] (* _Jean-François Alcover_, Sep 06 2019 *)

%Y A000560(n) = a(n+1)/2 (for n >= 2) gives number of nonisomorphic solutions (see also A086441).

%Y Cf. A000136, A001011, A001997.

%Y Row sums of A259689.

%K nonn,nice

%O 1,3

%A _N. J. A. Sloane_

%E Sade gives the first 11 terms. Computed to n = 45 by Iwan Jensen.

%E Offset changed by _Roger Ford_, Feb 09 2018

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 16 03:59 EDT 2024. Contains 372549 sequences. (Running on oeis4.)