login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000354 Expansion of e.g.f. exp(-x)/(1-2*x).
(Formerly M3957 N1631)
30
1, 1, 5, 29, 233, 2329, 27949, 391285, 6260561, 112690097, 2253801941, 49583642701, 1190007424825, 30940193045449, 866325405272573, 25989762158177189, 831672389061670049, 28276861228096781665, 1017967004211484139941, 38682746160036397317757 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
a(n) is the permanent of the n X n matrix with 1's on the diagonal and 2's elsewhere. - Yuval Dekel, Nov 01 2003. Compare A157142.
Starting with offset 1 = lim_{k->infinity} M^k, where M = a tridiagonal matrix with (1,0,0,0,...) in the main diagonal, (1,3,5,7,...) in the subdiagonal and (2,4,6,8,...) in the subsubdiagonal. - Gary W. Adamson, Jan 13 2009
a(n) is also the number of (n-1)-dimensional facet derangements for the n-dimensional hypercube. - Elizabeth McMahon, Gary Gordon (mcmahone(AT)lafayette.edu), Jun 29 2009
a(n) is the number of ways to write down each n-permutation and underline some (possibly none or all) of the elements that are not fixed points. a(n) = Sum_{k=0..n} A008290(n,k)*2^(n-k). - Geoffrey Critzer, Dec 15 2012
Type B derangement numbers: the number of fixed point free permutations in the n-th hyperoctahedral group of signed permutations of {1,2,...,n}. See Chow 2006. See A000166 for type A derangement numbers. - Peter Bala, Jan 30 2015
REFERENCES
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 83.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Roland Bacher, Counting Packings of Generic Subsets in Finite Groups, Electr. J. Combinatorics, 19 (2012), #P7. - From N. J. A. Sloane, Feb 06 2013
Paul Barry, General Eulerian Polynomials as Moments Using Exponential Riordan Arrays, Journal of Integer Sequences, 16 (2013), #13.9.6.
Chak-On Chow, On derangement polynomials of type B, Séminaire Lotharingien de Combinatoire 55 (2006), Article B55b.
Gary Gordon and Elizabeth McMahon, Moving faces to other places: Facet derangements, arXiv:0906.4253 [math.CO], 2009.
Gary Gordon and Elizabeth McMahon, Moving faces to other places: facet derangements, Amer. Math. Monthly, 117 (2010), 865-88.
Édouard Lucas, Théorie des Nombres, Gauthier-Villars, Paris, 1891, Vol. 1, p. 223.
Édouard Lucas, Théorie des nombres (annotated scans of a few selected pages)
István Mezo, Victor H. Moll, José L. Ramírez, and Diego Villamizar, On the r-Derangements of type B, arXiv:2103.04151 [math.CO], 2021.
István Mező, Victor H. Moll, José Ramírez, and Diego Villamizar, On the r-derangements of type B, Online Journal of Analytic Combinatorics, Issue 16 (2021), #05.
L. W. Shapiro & N. J. A. Sloane, Correspondence, 1976
Michael Z. Spivey and Laura L. Steil, The k-Binomial Transforms and the Hankel Transform, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.1.
FORMULA
Inverse binomial transform of double factorials A000165. - Paul Barry, May 26 2003
a(n) = Sum_{k=0..n} (-1)^(n+k)*C(n, k)*k!*2^k. - Paul Barry, May 26 2003
a(n) = Sum_{k=0..n} A008290(n, k)*2^(n-k). - Philippe Deléham, Dec 13 2003
a(n) = 2*n*a(n-1) + (-1)^n, n > 0, a(0)=1. - Paul Barry, Aug 26 2004
D-finite with recurrence a(n) = (2*n-1)*a(n-1) + (2*n-2)*a(n-2). - Elizabeth McMahon, Gary Gordon (mcmahone(AT)lafayette.edu), Jun 29 2009
From Groux Roland, Jan 17 201: (Start)
a(n) = (1/(2*sqrt(exp(1))))*Integral_{x=-1..infinity} exp(-x/2)*x^n dx;
Sum_{k>=0} 1/(k!*2^(k+1)*(n+k+1)) = (-1)^n*(a(n)*sqrt(exp(1))-2^n*n!). (End)
a(n) = round(2^n*n!/exp(1/2)), x >= 0. - Simon Plouffe, Mar 1993
G.f.: 1/Q(0), where Q(k) = 1 - x*(4*k+1) - 4*x^2*(k+1)^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Sep 30 2013
From Peter Bala, Jan 30 2015: (Start)
a(n) = Integral_{x = 0..inf} (2*x - 1)^n*exp(-x) dx.
b(n) := 2^n*n! satisfies the recurrence b(n) = (2*n - 1)*b(n-1) + (2*n - 2)*b(n-2), the same recurrence as satisfied by a(n). This leads to the continued fraction representation a(n) = 2^n*n!*( 1/(1 + 1/(1 + 2/(3 + 4/(5 +...+ (2*n - 2)/(2*n - 1) ))))) for n >= 2, which in the limit gives the continued fraction representation sqrt(e) = 1 + 1/(1 + 2/(3 + 4/(5 + ... ))). (End)
For n > 0, a(n) = 1 + 4*Sum_{k=0..n-1} A263895(n). - Vladimir Reshetnikov, Oct 30 2015
a(n) = (-1)^n*(1-2*n*hypergeom([1,1-n],[],2)). - Peter Luschny, May 09 2017
a(n+1) >= A113012(n). - Michael Somos, Sep 28 2017
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * (2*k - 1) * a(n-k). - Ilya Gutkovskiy, Jan 17 2020
a(n) = 2^n*KummerU(-n, -n, -1/2). - Peter Luschny, May 10 2022
EXAMPLE
G.f. = 1 + x + 5*x^2 + 29*x^3 + 233*x^4 + 2329*x^5 + 27949*x^6 + 391285*x^7 + ... - Michael Somos, Apr 14 2018
MAPLE
a := n -> (-1)^n*(1-2*n*hypergeom([1, 1-n], [], 2)):
seq(simplify(a(n)), n=0..18); # Peter Luschny, May 09 2017
a := n -> 2^n*add((n!/k!)*(-1/2)^k, k=0..n):
seq(a(n), n=0..23); # Peter Luschny, Jan 06 2020
seq(simplify(2^n*KummerU(-n, -n, -1/2)), n = 0..19); # Peter Luschny, May 10 2022
MATHEMATICA
FunctionExpand @ Table[ Gamma[ n+1, -1/2 ]*2^n/Exp[ 1/2 ], {n, 0, 24}]
With[{nn=20}, CoefficientList[Series[Exp[-x]/(1-2x), {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Jul 22 2013 *)
a[n_] := 2^n n! Sum[(-1)^i/(2^i i!), {i, 0, n}]; Table[a[n], {n, 0, 20}] (* Gerry Martens , May 06 2016 *)
a[ n_] := If[ n < 1, Boole[n == 0], (2 n - 1) a[n - 1] + (2 n - 2) a[n - 2]]; (* Michael Somos, Sep 28 2017 *)
a[ n_] := Sum[ (-1)^(n + k) Binomial[n, k] k! 2^k, {k, 0, n}]; (* Michael Somos, Apr 14 2018 *)
a[ n_] := If[ n < 0, 0, (2^n Gamma[n + 1, -1/2]) / Sqrt[E] // FunctionExpand]; (* Michael Somos, Apr 14 2018 *)
PROG
(PARI) my(x='x+O('x^66)); Vec(serlaplace(exp(-x)/(1-2*x))) \\ Joerg Arndt, Apr 15 2013
(PARI) vector(100, n, n--; sum(k=0, n, (-1)^(n+k)*binomial(n, k)*k!*2^k)) \\ Altug Alkan, Oct 30 2015
(PARI) {a(n) = if( n<1, n==0, (2*n - 1) * a(n-1) + (2*n - 2) * a(n-2))}; /* Michael Somos, Sep 28 2017 */
CROSSREFS
Column k=2 of A320032.
Sequence in context: A309260 A087662 A113012 * A103815 A134752 A370768
KEYWORD
nonn,easy,nice
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 28 14:38 EDT 2024. Contains 371254 sequences. (Running on oeis4.)