login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000188 (1) Number of solutions to x^2 == 0 (mod n). (2) Also square root of largest square dividing n. (3) Also max_{ d divides n } gcd(d, n/d). 147
1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 1, 4, 1, 3, 1, 2, 1, 1, 1, 2, 5, 1, 3, 2, 1, 1, 1, 4, 1, 1, 1, 6, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 4, 7, 5, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 3, 8, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 5, 2, 1, 1, 1, 4, 9, 1, 1, 2, 1, 1, 1, 2, 1, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,4
COMMENTS
Shadow transform of the squares A000290. - Vladeta Jovovic, Aug 02 2002
Labos Elemer and Henry Bottomley independently proved that (2) and (3) define the same sequence. Bottomley also showed that (1) and (2) define the same sequence.
Proof that (2) = (3): Let max{gcd(d, n/d)} = K, then d = Kx, n/d = Ky so n = KKxy where xy is the squarefree part of n, otherwise K is not maximal. Observe also that g = gcd(K, xy) is not necessarily 1. Thus K is also the "maximal square-root factor" of n. - Labos Elemer, July 2000
We can write sqrt(n) = b*sqrt(c) where c is squarefree. Then b = A000188(n) is the "inner square root" of n, c = A007913(n), lcm(b,c) = A007947(n) = "squarefree kernel" of n and bc = A019554(n) = "outer square root" of n. [The relation with LCM is wrong if b is not squarefree. One must, e.g., replace b with A007947(b). - M. F. Hasler, Mar 03 2018]
LINKS
Kevin A. Broughan, Restricted divisor sums, preprint.
Kevin A. Broughan, Restricted divisor sums, Acta Arithmetica, 101(2) (2002), 105-114.
Kevin A. Broughan, Relationship between the integer conductor and k-th root functions, Int. J. Pure Appl. Math. 5(3) (2003), 253-275.
Kevin A. Broughan, Relaxations of the ABC Conjecture using integer k'th roots, New Zealand J. Math. 35(2) (2006), 121-136.
John M. Campbell, An Integral Representation of Kekulé Numbers, and Double Integrals Related to Smarandache Sequences, arXiv preprint arXiv:1105.3399 [math.GM], 2011.
Steven R. Finch and Pascal Sebah, Squares and Cubes Modulo n, arXiv:math/0604465 [math.NT], 2006-2016.
Gerry Myerson, Trifectas in Geometric Progression, Australian Mathematical Society Gazette 35(3) (2008), 189-194
Andrew Reiter, On (mod n) spirals (2014), and posting to Number Theory Mailing List, Mar 23 2014.
N. J. A. Sloane, Transforms.
Florentin Smarandache, Collected Papers, Vol. II, Tempus Publ. Hse, Bucharest, 1996.
László Tóth, Counting solutions of quadratic congruences in several variables revisited, arXiv preprint arXiv:1404.4214 [math.NT], 2014.
László Tóth, Counting Solutions of Quadratic Congruences in Several Variables Revisited, J. Int. Seq. 17 (2014), # 14.11.6.
FORMULA
a(n) = n/A019554(n) = sqrt(A008833(n)).
a(n) = Sum_{d^2|n} phi(d), where phi is the Euler totient function A000010.
Multiplicative with a(p^e) = p^floor(e/2). - David W. Wilson, Aug 01 2001
Dirichlet series: Sum_{n >= 1} a(n)/n^s = zeta(2*s - 1)*zeta(s)/zeta(2*s), (Re(s) > 1).
Dirichlet convolution of A037213 and A008966. - R. J. Mathar, Feb 27 2011
Finch & Sebah show that the average order of a(n) is 3 log n/Pi^2. - Charles R Greathouse IV, Jan 03 2013
a(n) = sqrt(n/A007913(n)). - M. F. Hasler, May 08 2014
Sum_{n>=1} lambda(n)*a(n)*x^n/(1-x^n) = Sum_{n>=1} n*x^(n^2), where lambda() is the Liouville function A008836 (cf. A205801). - Mamuka Jibladze, Feb 15 2015
a(2*n) = a(n)*(A096268(n-1) + 1). - observed by Velin Yanev, Jul 14 2017, The formula says that a(2n) = 2*a(n) only when 2-adic valuation of n (A007814(n)) is odd, otherwise a(2n) = a(n). This follows easily from the definition (2). - Antti Karttunen, Nov 28 2017
Sum_{k=1..n} a(k) ~ 3*n*((log(n) + 3*gamma - 1)/Pi^2 - 12*zeta'(2)/Pi^4), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Dec 01 2020
Conjecture: a(n) = Sum_{k=1..n} A010052(n*k). - Velin Yanev, Jul 04 2021
G.f.: Sum_{k>=1} phi(k) * x^(k^2) / (1 - x^(k^2)). - Ilya Gutkovskiy, Aug 20 2021
EXAMPLE
a(8) = 2 because the largest square dividing 8 is 4, the square root of which is 2.
a(9) = 3 because 9 is a perfect square and its square root is 3.
a(10) = 1 because 10 is squarefree.
MAPLE
with(numtheory):A000188 := proc(n) local i: RETURN(op(mul(i, i=map(x->x[1]^floor(x[2]/2), ifactors(n)[2])))); end;
MATHEMATICA
Array[Function[n, Count[Array[PowerMod[#, 2, n ] &, n, 0 ], 0 ] ], 100]
(* Second program: *)
nMax = 90; sList = Range[Floor[Sqrt[nMax]]]^2; Sqrt[#] &/@ Table[ Last[ Select[ sList, Divisible[n, #] &]], {n, nMax}] (* Harvey P. Dale, May 11 2011 *)
a[n_] := With[{d = Divisors[n]}, Max[GCD[d, Reverse[d]]]] (* Mamuka Jibladze, Feb 15 2015 *)
f[p_, e_] := p^Floor[e/2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 18 2020 *)
PROG
(PARI) a(n)=if(n<1, 0, sum(i=1, n, i*i%n==0))
(PARI) a(n)=sqrtint(n/core(n)) \\ Zak Seidov, Apr 07 2009
(PARI) a(n)=core(n, 1)[2] \\ Michel Marcus, Feb 27 2013
(Haskell)
a000188 n = product $ zipWith (^)
(a027748_row n) $ map (`div` 2) (a124010_row n)
-- Reinhard Zumkeller, Apr 22 2012
(Python)
from sympy.ntheory.factor_ import core
from sympy import integer_nthroot
def A000188(n): return integer_nthroot(n//core(n), 2)[0] # Chai Wah Wu, Jun 14 2021
CROSSREFS
Cf. A019554 (outer square root), A053150 (inner 3rd root), A019555 (outer 3rd root), A053164 (inner 4th root), A053166 (outer 4th root), A015052 (outer 5th root), A015053 (outer 6th root).
Cf. A240976 (Dgf at s=2).
Sequence in context: A249740 A071773 A308993 * A162401 A324924 A301314
KEYWORD
nonn,easy,nice,mult
AUTHOR
EXTENSIONS
Edited by M. F. Hasler, May 08 2014
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 20 04:17 EDT 2024. Contains 371798 sequences. (Running on oeis4.)