
Counting unholey polyominoes

A000104 was taken to 40 terms (from a previous set of 28 terms) by using the following formula:

(4*A056879(n) + 4*A056881(n) + 4*A056883(n) + 6*A056880(n) + 6*A056882(n) + 6*A357647(n) +

7*A357648(n) + A006724(n)) / 8

Each of the first 7 terms of the formula corresponds to a specific symmetry of unholey polyomino.

The last term corresponds to the number of fixed self-avoiding polygons on the square lattice, which

corresponds to the number of fixed unholey polyominoes. This latter sequence has already been

calculated through a(42) by Iwan Jensen.

It was therefore necessary to calculate the symmetries through to at least 40 terms, beyond the 28

terms already available. The last two sequences, A35764x, were not present in OEIS.

These are:

Sequence Symmetry Subdivision Program

A056879 Mirror 90
M90C: Axis thru square centre countm90c

M90V: Axis thru vertex countm90v

A056881 Mirror 45 M45 countm45

A056883 Rotational 180

R180C: About centre of square countr180cf:startersize=1x1

R180ME: About mid-edge of square countr180cf:startersize=2x1

R180V: About vertex countr180cf:startersize=2x2

A056880 Both mirror 90

2M90C: Axis thru square centre countE

2M90ME: Axis thru mid-edge of square countdomino

2M90V: Axis thru vertex count2m90v

A056882 Both mirror 45
2M45C: About centre of square countm45

2M45V: About vertex countm45

A357647 Rotational 90
R90C: About centre of square countr90ccf

R90V: About vertex countr90vcf

A357648 All
AllC: About centre of square countallccf

AllV: About vertex countallvcf

Program runtimes:

Program Size Time

countm90c 40 63 hrs

countm90v 40 14 hrs

countm45 40 21 hrs

countr180cf:startersize=1x1 39 1-2 days

countr180cf:startersize=2x1 40 35 hrs

countr180cf:startersize=2x2 40 13 hrs

countE 52 30 secs

countdomino 54 18 secs

count2m90v 56 2 secs

countr90ccf 57 26 secs

countr90vcf 56 21 secs

countallccf 57 < 1 sec

countallvcf 60 < 1 sec

Runtimes tend to multiply by 4 for each increase in 2 of the size.

Unfortunately, there is no logging as the programs run. It would be reassuring to have a line on

stderr with a timestamp for every 10000, 100000 or million polyominoes counted.

The classes used are:

Program Class Extends Description

countm90c CounterM90C CounterBase Outputs M90C
numbers in OEIS
format

countm90v CounterM90V CounterBase Outputs M90V
numbers in OEIS
format

countm45 CounterM45 CounterWithMultipleCopies Outputs M45, M45C,
M45V numbers as csv

countr180cf CounterR180CentreFull Counter Outputs R180
numbers in OEIS
format, according to
input parameter
startersize

countEnew CounterLetterECentreFull CounterBase Outputs 2M90C
numbers in OEIS
format

countdomino CountDominoCentre2M90 CounterBase Outputs 2M90ME
numbers in OEIS
format

count2m90v Counter2M90VCentreFull CounterBase Outputs 2M90V
numbers in OEIS
format

countr90ccf CounterR90CCentreFull CounterWithMultipleCopies Outputs 2M90V
numbers in OEIS
format

countr90vcf CounterR90VCentreFull CounterWithMultipleCopies Outputs 2M90V
numbers in OEIS
format

countallccf CounterAllCCentreFull CounterBase Outputs 2M90V
numbers in OEIS
format

countallvcf CounterAllVCentreFull CounterBase Outputs 2M90V
numbers in OEIS
format

All the programs require parameters:

size=n : the target size for the program run

unholey=true : to specify we are looking for unholey polyominoes; precisely what output is

obtained with unholey=false or missing is not guaranteed.

The goal would have been for all classes to extend CounterBase but this has not yet been achieved.

Each class that extends CounterBase works on the same principles:

1. The class starts up the polyomino with the initial centre square or squares.

2. It then calls the recursion method of CounterBase.

3. This latter performs the recursion to obtain polyomino growth by:

a. Choosing the first available candidate growth square and then generating recursively

all of its sons, and then:

b. Eliminating said square as a candidate and then generating recursively all

polyominoes that do not have it.

4. CounterBase may invoke class-specific methods useful to define which candidate squares

should be considered, which symmetries should be included, etc.

The other, non-CounterBase classes work on the same principles but with their own ad hoc code.

All of the classes use a double representation of the current polyomino:

• An array root[][] where root[0][i] contains the x coordinate of the i-th square, and root[1][i]

the y coordinate

• An array board[][] where each position contains an indication of the presence of a square in

the polyomino

As each class is dedicated to the counting of some polyomino symmetry, often only a quarter, half or

eighth of the complete polyomino will be represented. This complicates the counting of holes, as can

be seen in the code.

The number of holes is obtained through the following formula (based on a generalization of Pick's

Theorem): H = n + 1 - i - s / 2, where:

• n is the size (area) of the polyomino;

• i is the number of completely internal vertices; i.e., the number of vertices that are

surrounded by 4 squares;

• s is the number of vertices on a single border; i.e., vertices that are the corners of 1, 2 or 3

squares, but excluding those that touch only 2 squares that are diagonally adjacent.

The algorithm for calculating the parameters needed by the formula involves considering each

vertex of each square. Each represented square may correspond though to more than 1 effective

square in the complete polyomino, and so there will be a multiplier to use for each addition to the

“I” and “s” parameters (see getHoleyMultiplier).

Further, it is sometimes necessary to consider the existence of squares that are not represented.

Each class must therefore offer a way of checking the occupancy of a virtual square by mapping its

coordinates onto those of a represented square (see containsSpecific).

Most of the classes add 1 to an array called counter2 for each unholey polyomino found. During the

phase of results presentation, some classes may need to divide the counters by 2 or 4 to take into

account that the algorithm may find the same polyominoes multiple times in different rotational or

reflectional positions.

Each program should be run according to this example, where the trailing parameter “none” is

useless but present for historical reasons.

java -jar UnholeyCounters.jar count2m90v:size=56,unholey=true none

There may be some upper/lowercase discrepancies between the above tables and the actual

implementation.

John Mason October 11, 2022

For any further information, please write to me at the email address :

TheIllustratedPolyomino (at) gmail (dot) com

