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A SHORT NOTE ON INTEGER COMPLEXITY

STEFAN STEINERBERGER

Abstract. Let f(n) be the minimum number of 1’s needed in con-
junction with arbitrarily many +,* and parentheses to write an integer
n (i.e. f(6) ≤ 5 since 6 = (1 + 1)(1 + 1 + 1)). Selfridge has shown
that f(n) ≥ 3 log3 n and Guy (using observations of Coppersmith and
Isbell) has proven that f(n) ≤ 3.82 log3 n for ‘generic’ integers n. We
improve on the classical Coppersmith-Guy-Isbell argument by consider-
ing a more general discrete dynamical system on Zd for some arbitrary
fixed d ∈ N. As n becomes large, the dynamical system approximates
a Markov chain whose behavior is explicitely computable. We consider
the case when d = 6 and use it to prove f(n) ≤ 3.66 log3 n for generic
integers.

1. Introduction

The following problem of Mahler and Popken [6] dates back to 1953:
What is the minimum number of 1’s necessary to write down an integer n
if we can use an arbitrary number of +, ∗ and parentheses? For example,
denoting the solution by f(n) and omitting the ∗ whenever it is clear,

6 = (1 + 1)(1 + 1 + 1)

shows that f(6) ≤ 5.
The above problem was popularized by Guy [3] who claims in a Monthly

article from 1986 to have been periodically reminded of it by Erdős, Isbell
and Selfridge. It was included as problem F26 in Guy’s Unsolved Prob-
lems in Number Theory [4] and mentioned in Wolfram’s book [9, p. 916].
Furthermore, by writing

f(n) = min
d|n

m≤n

{
f(d) + f

(n
d

)
, f(m) + f(n−m)

}
,

the problem can be regarded as an easily stated model problem for studying
the difficulties that arise when mixing additive and multiplicative behavior.
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Known results. Mahler and Popken proved a lower bound; a refined ver-
sion of their argument is due to Selfridge [3], who showed inductively that
for any θ ∈ {−1, 0, 1} the largest number that can be represented using at
most 3k + θ 1’s is 3k + θ3k−1. This immediately implies a lower bound of

f(n) ≥ 3 log3 n

with equality for 3n = (1 + 1 + 1)n. Srinivar and Shankar [8] used this argu-
ment to construct an algorithm for computing f(n). Since this lower bound
is attained infinitely often, we will write any upper bound as a logarithm in
base 3 to simplify comparison.

A very attractive special case is the question whether

f
(
2a3b

)
= 2a+ 3b

is true. Note that, if true, this would immediately imply f(n) ≥ 3.16 log3 n
for n = 2k. The case when a, b are both nonzero and a ≤ 21, this has
been proven by Altman and Zelinsky [1]. However, the conjecture f(2p) =
min(1+f(p−1), 2+f(p)) for primes p was disproved by Iraids (see [5]) with
the smallest counterexample being p = 10278600694. Results of a similar
type are discussed in [5].

The following explicit construction is attributed to Coppersmith, writing
n = (a0a1 . . . an)2 in binary and using Horner’s scheme, we get

n = an + (1 + 1)(an−1 + (1 + 1)(an−2 + . . .

This representation requires the digit 1 at most 3 log2 n times and thus gives
an upper bound of

f(n) ≤ 3 log2 n ∼ 4.754 log3 n.

According to Guy, it was first noted by Isbell that the bound f(n) ≤ 3 log2 n
is rather pessimistic; the bound assumes that the binary representation of n
consists of only 1’s, which happens only for numbers of the form n = 2k−1.
A ‘typical’ number will have roughly half of its digits equal to 0 and this
shows that

f(n) .
5

2
log2 n ∼ 3.962 log3 n

should be a more accurate estimate for most numbers. One can extend this
thought to other bases and Guy notes that writing numbers in base 24 gives
for a ‘typical’ number n that

f(n) ≤ 3.819 log3 n.

This is the place to remark that the notion of ‘typical’ can be deduced from
the above argument. A number is considered ‘typical’ or ’generic’ if the
frequency of the digits in base 24 appear to be fully random, i.e. no digit
appears with significantly greater frequency than any other digit. If we
consider the set

Ak = {n ∈ N| n has precisely k digits in base 24} ,
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then there is a direct bijection between Ak and

{1, . . . , 23} × {0, . . . , 23}k−1 .
If we define for 0 ≤ i ≤ 23 the function gi(n) as the number of times the
digit i appears in the representation of n in base 24 and µk as the normalized
counting measure on Ak, then for any ε > 0

lim
k→∞

µk

{
n ∈ Ak : sup

0≤i≤23

∣∣∣∣gi(n)− k

24

∣∣∣∣ > ε

}
= 0.

Or, stated differently, the subset of Ak where our average digit analysis
is even slightly off becomes small compared to the full set. This detailed
analysis of the Coppersmith-Isbell-Guy argument motivates the language of
our result, where we show

f(n) ≤ 3.66 log3 n

for ‘generic’ integers.
Theorem 1.1. There exists a partition of the nonnegative integers into
finite sets, i.e.

N>0 =

∞⋃
k=1

Ak and Ai ∩Aj = ∅

for i 6= j with normalized counting measures µk such that

lim
k→∞

µk {n ∈ Ak : f(n) > 3.66 log3 n} = 0.

By elementary measure theory, the theorem is equivalent to the triv-
ial statement that there exist infinitely many numbers for which f(n) <
3.66 log3 n (trivial because this is true for the powers of 3). However, the
proof is based on an explicit algorithm for computing a representation of n
using only 1’s and thus provides additional information on the sets Ak. The
sets are explicitly given and both their size as well as their largest element
grow exponentially in k (with different rates). Furthermore, we believe a
stronger result holds and that the set

{n : our algorithm uses the digit 1 fewer than 3.66 log3 n times}
has asymptotic density 1.

As previously mentioned, the difficulty stems from mixing additive and
multiplicative behavior. Returning to Coppersmith’s original argument, we
see that writing n = 22k−1 in binary requires the digit 1 at most 4.754 log3 n
times. However, any number n of this form is a multiple of 3 and we see
that

1

3
(22k − 1) = (1, 0, 1, 0, . . . , 0, 1)2 ,

where the number has 2k − 1 digits in base 2. These numbers satisfy Is-
bell’s average case argument and this immediately gives the improved bound
3.962 log3 n for numbers of this type. In general, it seems that one can ex-
pect that any result of the above type for ‘generic’ integers should also hold
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true for all sufficiently large integers because one should always be able to
find three ‘generic’ integers a1, a2, a3 of size log ai ∼ log3 n− 1. Proving this
rigorously, however, might pose considerable difficulty.

2. Preliminary heuristics

From Coppersmith’s original argument, we can regard it as an iteration
of the substitution rule

n = (n mod 2) + 2
⌊n

2

⌋
followed by replacing all 2’s with (1+1). Heuristically, we would like to have
an algorithm yielding a final result in the magnitude of 3 log3 n - applied to
substitution rules. This means we would ideally like to use the digit 1 three
times if the next iteration step is at most a third of the size. Every additional
digit means losing efficiency; applying this to the binary argument, a number
needs either 2 or 3 digits (depending on parity) but should ideally only need
3 log3 2 digits. Clearly, if a number can be divided by 3, it should also be
divided by 3 and this gives rise to the following substitution algorithm.

(1) Take an arbitrary number n ∈ N. If n ≤ 5, use the representations
2 = (1+1), 3 = (1+1+1), 4 = (1+1)(1+1) and 5 = (1+1)(1+1)+1,
otherwise determine n mod 6.

(2) If n mod 6 = 0, write it as n = 3(n/3).
If n mod 6 = 1, write it as n = 1 + 3((n− 1)/3).
If n mod 6 = 2, write it as n = 2(n/2).
If n mod 6 = 3, write it as n = 3(n/3).
If n mod 6 = 4, write it as n = 2(n/2).
If n mod 6 = 5, write it as n = 1 + 2((n− 1)/2).

(3) Repeat step (2) until 1 is reached.

This procedure is a greedy algorithm: Motivated by the heuristics above, in
each step the algorithm compares the respective efficency of representations
in both mod 2 and mod 3. For example, the case n mod 6 = 4 can be dealt
with by writing either

n = 2(n/2) or n = 1 + 3((n− 1)/3),

where the measure of wastefulness (digits used minus allowed number of
digits given the size of the remainder) is 2 + 3 log3 1/2 ∼ 0.107 . . . and
4 + 3 log3 1/3 = 1 respectively. The first case outperforms the second and is
thus chosen by the algorithm.

It is crucial for the subsequent argument that the sequence of possible
states is restricted. Let us denote the six states of the algorithm by 0, . . . ,5.
Not every sequence of states is possible: If we are in case 2, we are dealing
with a number of the form 6n+ 2, which will then be reduced to a number
3k+ 1, this number can be either of the form 6n+ 1 or 6n+ 4, i.e. the state
2 can only be followed by either the state 1 or the state 4. A complete list
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is given by the following diagram.

0

��

��

((
1oo

ww

��

2

��

77

3

^^

��

ww

4

^^

// 5

gg

EE

It is easily seen that this substitution rule maps the integers bijectively
into the space of admissibile sequences, one can iteratively reconstruct the
number. Suppose we are given the sequence (3,5,2,1) - it ends in 1 and
by following the arrows, one easily sees that it is admissible. We start with
the number 1, the penultimate state is 2. In state 2, a number is written
as 2(n/2), where (n/2) is known to be 1. A number in state 5 is written
as 1 + 2((n − 1)/2), where the number in the parenthesis is known to be
2, thereby giving the number 5. A number in state 3 is written as 3(n/3)
yielding the resulting number 15.

3. Proof of the Theorem

We begin the proof of Theorem 1.1 by defining the set

Ak = {n ∈ N| the substitution rules traverse k − 1 states before reaching 1} .

For example, A1 = {1}, A2 = {2, 3, 5} and A3 = {4, 6, 7, 9, 10, 15}. We are
interested in the asymptotic properties of the sequence of states through
which a typical element in Ak travels, i.e. in the sequence of probability
measures πk on {0, . . . , 5} given by

πk(i) = µk {n ∈ Ak|n mod 6 = i} .

Studying this limit will be done by looking at the inverse time direction
k → k − 1 for large k. Standard Markovian theory gives that the limit
probability distribution π needs to satisfy

π =



1
3

1
3 0 0 0 0

0 0 1
2

1
3 0 0

1
3

1
3 0 0 1

2
1
2

0 0 0 1
3 0 0

1
3

1
3

1
2 0 0 0

0 0 0 1
3

1
2

1
2

π,

which implies

π =

(
1

13
,

2

13
,

4

13
, 0,

3

13
,

3

13

)T

.
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However, this immediately implies the average decay rates (state 0 is essen-
tially multiplication with 1/2, state 1 is essentially multiplication with 1/3
and so forth) and this implies

lim
k→∞

1

#Ak

∑
n∈Ak

log n = 210/1333/13 ∼ 2.1961 . . . .

At the same time, the stationary distribution also implies the average cost
of the algorithm (state 0 needs 3 digits, 1 needs 4 digits, ...) and thus the
average number of digits used in each step is

2 (π(2) + π(4)) + 3 (π(0) + π(3) + π(5)) + 4π(1) =
34

13
.

Summarizing, the average cost is given by

f(n) ∼ 34

13

log 3
10
13 log 2 + 3

13 log 3
log3 n ∼ 3.6522 . . . log3 n.

Showing that the average case is typical follows immediately from standard
deviation theory. �

4. Concluding Remarks

The described method can be extended to any base. For instance, the
original Coppersmith-Isbell-Guy argument of writing a number in base 24
can be understood as considering 24 states and using the trivial transition
rule: Every state i is mapped to all other states with equal probability
(because knowledge of a digit does not allow us to conclude anything about
the preceding digit). However, as demonstrated by the fact that our refined
dynamical system in base 6 improves on the trivial method in base 24 and
since there is reason for the trivial method to be particularly effective in this
larger framework, it is natural to assume that our method will always allow
us to get better results.

The real remaining challenge is of a computational nature; specifically,
how should one define the transition rule? Our approach was greedy and
attempts to make every step as small and using as few digits as possible.
There is no reason to assume that this approach is optimal. indeed, it might
be better to accept a local loss by mapping the states less efficiently or by
using more 1’s than necessary to favorably change the global dynamics of
the flow in the Markov chain for an overall improvement. Due to the non-
trivial amount of computation, we do not know whether this phenomenon
is observable and consider it to be an interesting problem.

We remark that since this is the runtime analysis of a O(log n) algorithm,
one can very well see it in practice. Let us conclude the paper by noting
that the lower bound has not been improved in the slightest. It has been
suspected and seems reasonable, but it is unknown whether

f(n) ∼ 3 log3 n

is false.
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