“0  Mr. Wilson, Note on the cxistence of Abel's limit.
§ 2. L('i‘ ¢ (1) be a real, positive, monotone tncr easing function
of the veal, positive variable u such that
9()>1, ¢()=>® as n=pw,
¢ ()
(1)
and denote by F(z) the fntegral function

0<n

<c;

z
Fliz)== ——
KT
Then, as z increases by real positive values
F(z2) > ek2ila)
wheve I 7s a positive constant.

Forif n is regarded as a continuous variable, and z as a

z n
. )r has its maximum value when

ugp (i)}
NN
IOD {m}—l+n¢(1‘),

so that for the maximum value

constant, the function {

<ke
124; n)
Tlus, if the equations
{4) y=rkem¢(m), m= w(y)
are equivalent to one anotler, it is seen that the maximum of

{’?’%)}n excecds e«(2), Baut, from (4)

’5) ==L L
@) =m Leg(m) ” Tegly) *

since m <y. We therefore Lave at once the result stated in
the theorem.

§3. Let now ¢'n) be any function of a sahsf)mg the
conditions postulated aboxe and let 1 Le as before.  Write

. (k" .
g(z,_zm”)} °

T e ——— ——
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so that g(z) is an integral funetion of z; write also

(@)= 1+x)"‘“‘=50( 1)" ("tm> & (m=0,1,2...),

-3
e AT
It is casily shown® t].t S () is anal

that, as & tends alonp 5
: tolz-
cude Abel’s limit gty Stolz path to

©) :lir:,f( )_1+x0 (ﬁ)’ Gx’,=1; x,;&—l)

. ! | ;
€xists. . Ou the other Liand we have, for Jz] <1 p
’ :

ytic for jz] <1, and
a4 point z, on the upit-

S)= 2 qu
o ™ s ; \
where C(~1w=% { % }”'(vc-i-m N ’m
S, 1 -
and therefoye =0 (B () " ’
{
. k
(2 bis) !a,]>m>5 {m (m)} n" > enip(n) '
in virtue of §2. - !

SOME PROBLEMS IN POl‘h’\ITIAL THEORY. )

/,
By Dr. F. Bateman

o §1. Ina previous notet it was shown that the potential
a surface of 1evo]ulmn whose meridian curve is g hmng:on
¢an be expressed in the form

V=

. P (cosh o |
(cosho - cos x) ¥ ("7z+1)1_, (Losha)) (cos]no-D)Pn (cosyy), '

\
* See Landau, Joc. ci,

t Messenger of Mathematics, vol. 1;. (February, 1922), p. 151.
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(4
the potential being unity over the surface o = o, where

(R—-X)‘ asiny

2 " cosho—cosy”

B+ Xt asinho
< 2 7)=cosha—cosx’
To find the capacity of the surface we must determine the
form of 17 at infinity, e in the neighbourhood of o =0,
=0, Writing
n(n+1)

(cosha-1) (r-1)n(n+1) (n+2) (cnsha—l)’
cosho-14———— | —5 ) =

P (cosho)=1+ — oy 2
2
n{n+1) (n-1)n(n+1)(n+2) fcosy-1
P (cosy)=1+ ( (cosy -1)+* o 2 +eey
: : 2
g b e

)
cosho —cosy cosha—cos x

, cosh’o +cos'y — 2 Lcosho +cosy—2

L=a (cosho — cosy)* @ (cosho —cosy)" ’

we find that _
24" Q,(coshe,) 2a'X = _ @, (cosha,)
Vzﬁ :Eo (2n41) P, (coshco)+ i ”Eon(nﬂ)( r )P'Lcoshar.)
Foeeeenen
Tlie first term gives an expression for the capacity C, viz.,
, © Q. (cosha))
C=2d n2.20(271 +1) P ooshio)’

while the second term enables us to determine a point where
the charge C should be placed in order that its potential may

agree with 7 at infinity up to terms of the second order in B
"Ihis point may be called the centre of charge. )
"T'o find the polar equation of the limagon we write

_sinh o, siny,

2a* B cosha cosy,-1 .
cosho~cosy,

sp=
cosh o~ cos x,

7= coshio-cosy,’ '
cosh o,~cosy,

then X=a'+rcosf, Y=y(R —X)=rsinb,

20?

(cosh o, + cosB).

\

r= =
and sinh’o

The arca of the surface generated by the revolution of the
; - . . -
Linsecon about its axis of synnnetry 13 a7k, wl.mle

J: = 2u* cosech’o, (cos’o, + B

v

i

-

b s

e
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With the aid of tables for @, (cosho,) and P, (coshe,) we
fiud that

cosh o, C[2a2 k| 2a?
2 718695 .722009
1.2 3.25824 3.29872

Tn the case of a sphere (cosh o, =w ) we have, of course, C=£.

Of all surfaces of given arca the sphere has apparently the
greatest capacity.  When cosho,=2 the limacgon has a point
of undulation on the axis of synnnetry, the poiuts of contact
of the double tangent being consecutive. The value of C in
this case differs from % by about 1 part in 200. When
cosho,=1.2 the double tangent touches the limagon in two
distinct real points, and the curve bends inwards near the
vertex. I'he capacity is slightly reduced by this hLollow, C
differing from % by about 1 part in 80.

§2. Since the author does not remember having seen any
tables of spheroidal harmonigs, the values of P, @, and their

first derivatives are given® for a few values of cosho.

g=coshe=11

n Pu(s) ’ Qu(e)

0 1 1.52226 12188
1 1.1 - ,67448 73407
2 1.315 135177 35028
3 1.6775 .19525 98613
4 2.24293 175 .11204 51059
5 3.09901 625 06564 14207
6 4.38056 81875 .03900 59434
7 6.29257 53687 .02341 94953
8 9.14543 95340 ..01417 25085
9 13.40879 07039 .00862 99941
10 19.79347 69907 .00528 14300
11 29.37649 19495 .00324 55538
12 43.79141 66188 .00200 13984
13 65.51892 72018 ©.00123 78316
14 98.33026 58463 .00076 75299
15 147.96469 99781 .00047 69708
16 223.16514 25975 .00029 69847
17 337.26232 21552 .00018 52360
18 510.59955 43788 .00011 57137
19 774.24631 91802 .00007 23842
20 1175.68877 79816 .00004 53361

* In culcnlating these values use has beer made of the values of log2, loy.3,
Jog.5, log,7. and log10, given by J. C. Adams, I’roc. Roy Soc., Londom, vol. xxvii,
(1878), p. 83,
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s=cosho=1.1

N I,-'(x) Q-’("

0 0 —4.76190 47619
1 1 —3.71583 40193
2 3.3 —2,73844 27398
3 7575 —1.95696 65053
4 15.0425 —1.37162 37107
5 27.76143 75 —0.94856 05522
6 49.13167 875 —0.64956 80830
7 84.70882 39375  —0.44148 32880
8 143.52030 92812  —0.29827 56535
9 240.18129 60152 —0.20055 06435
10 398.28733 26562  —0.13430 57656
11 655.84431 28191  —0.08964 06135
12 1073.94664 74947  —0.05965 80282
13 1750.62972 82891  —0.03960 56535
14 2842.95768 19433  —0.02623 65750
15 4602.20743 78318  —0.01734 72864 j
16 7429.86338 12644 —0.01145 04802 -
17 11966.65714 35493  —0.00754 67913
18 19234.04465 66964  — 0.00496 72202
19 30858.84065 55649  —0.00326 53844
20 49429.65110 47242  —0.00214 42364

Sinee these values were ealeulated with the aid of the

difference relations

P —P, =@+ 1) P,

Q‘-ql - an—l = (2" + 1) Qu’
the last two or three figures in the above numbers are doubtful
when = is large. Ihe difference relations

P'“—SP'"_I =aP_, @ —sQ,_,=2Q_,

are, however, satisfied to 9 decimal places when u = 20, so the
last fizure may be the only one which is wrong.

s=coshe=12

Pl{") I’I’(‘) Qn'*) in(’)

1 0 1.19894 76364 — 2.27272 72727
1.2 1 43873 71637 —1.52832 50908
1.66 3.6 19025 30764 —0.95651 57816
2.52 9.3 08801 47104 —0.57705 97088
4.047 21.24 04214 10845 — 0,34041 28088
6.72552 45.723 02061 29742 —0.19778 994&3

01023 09729 —0.11367 00926
00513 21902 —0.06478 73006
34.3150%07 390,625848 00259 53267 — 0.03668 72396
60.27536052 177.5867439 00132 07936 — 0.02066 67467
"106.5442493556 1535.85769788 .00067 56155 —0.01159 21612

95.22072
194,230372

11.423044
19.6936752

I
(N.

’j/-’-?@-)ﬁ F,;\‘.-vér_v' ‘KZ

L LT 21
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. o /' 7 s=coshe
0 1 0
1 2 1 !
2 5.5 6
3 17 285
4 55.375 125
5 185.75 525 875
6  6351.9375. 2168:25-
7 2199125 8781.0625-
8 7691.14843%75.  35155.195
9 27100.671875. 139530 5859375

10 96061?.5%9531 25 550067.890625-

. 15 675,

O/ 3 I, F¥
2 13 = i ’P:;T

3 63 66

4 321 450

5 1683 2955

6 8989 18963

7 48639 119812

8 265729 748548

9 1462563 4637205

10 8097453 28537245

1/écosh =3
0

273 ‘FN

ms in potential theory. 75

=2

.54930 61443 —0.33333 33333
.09861 22886 — 011736 05223
02118 37938 — 0.03749 64673
00487 11203 — 001144 15531
.00116 10758 —0.00339 86249
.00028 29767 —0.00099 18706
.00007 00180 — 0.00028 58810
.00001 75157 — 0.00008 16355
.00000 44181 —0.00002 31451
~00000 11212 — 0.00000 65271
.00000 02843 — 0.00000 18419

-34657 35903 ~ 0.125

03972 07708 — 0.02842 64097
-00545 66736 - 0.00583 76874
00080 28543 —0.00114 30415

00012 24799 — 0.00021 77073
-00001 91079 - 0.00004 07227
.00000 30267 — 0.00000 75209
-00000 04847 —0.00000 13759
-00000 00783 —0.00000 02499
.00000 00127 —0.00000 00451
.00000 00021 .— 0.00000 00081

§3. To obtain a potential function ¥ whicl, satisfies the

oV 8X
oN~ " ON

condition

over the surface 0=0, We assume

for points outside the body

V=a"U{cosh o — cos x) 5 (2m+1)4,P (cosh o) P, (cosy)
. m=0

=a'U 3 (m+1) (“J.,.;—A..)
m=0
x {P, (cosha) P
Now " ™
inh’e — gin?
X, Nn X
“ (cosho —cosy)?

, (cos X)— Pml (cosh a) P- (cos x)}

=a’(cosl g -cosy) s o+ 1)[m (s 1)+ 1]Q,, (cosh o) P (coshx)
m=0

=a’2a" $ (m11)'(Q (cosl, ) (€08 )= @, (c0sh 0)P, (cus y )}y

m=0 .
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hence the boundary condition at ¢ =g, will be satisfied for all
values of y 1f

Us (m+1)(4, - 4)
" x{F' (coshe) P |
=20 (m+1)'{ Q' (cosho )P, (cosy)-Q ..., (cosh o) P (cos x)].
This leads to the systen of equations
m (A=A, VP (cosho)—(m+1)(4,,—4,)F,,. (cosha,)
=2m'¢_ (cosho)—2(m+1)'Q,, (cosha).

The left-hand side of the typical equation becomes a perfect
difference when multiplied by P "(cosha,), while the right-
Land side may be transformed with the aid of the identity

(cosx)— P’ (cosho,) P, (cosx)}

Q (cosha )P’ _(cosha)-Q' _(cosha )P’ (coshoy=mcosech’s,.

Consequently the typical equation may be written in the form’

m (4, —A4, VP (cosha) P
—(a+1)(4,,—4,) P (cosho) P
=2m*Q’ (coshoy) P’ (coshe,)

(cosh a,)

cosha,)

[ w1 (

—2(m+1) Q. (cosho) P’ (cosh o) —2m° cosecl’o,.
Summing from m=1 to m=mn, we get
(n+1)(4,,—4,)F (cosho) P, (cosho,)

¥ + 1 3
2 (m+1) Q. (cosho)) P'_(coshar,) + L)

2 sinl’g,’

therefore
@,.., (cosha,)
A= Ap=2(m+1) P’ (cosha)
m' [, (cosha) = @, (cosh a,)
t3 [P’m” (coshia)) P (cosh an)jl
. @, (cosho . @, (cosha))
=3(n+2) gm: ((cosh a:)) —&m P’ (cosha)’

Hence finally we obtain the following expression for V

. @, (cosha) . @, (cosha)
V=1dUZ (m +1) [(m +2) e W,:) —m m

m+l

x [P, (cosha) P, (cosx) — I, (cosho) P, (cosx)].

L

T (cosh o — cos )

e
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We may deduce from this expression the form which @
takes at infinity by writing for small values of ¢ and x the
expansions for P, (cosha) and P, (cosx) uscd before. = The
coefficient of cosho —cosy is then

U S (m+1) I:(m + 2)’!_9"-&.») ) M] ’

m=0 P’ (cosha) m £’ (cosha,)

and this is zero. "The most important term in the'expansion
is thus '

oo

m(m + 1)’(17_1 +2)

m=0
X |:.(m +2)? M) » @', (cosh a-o):l . '

£ (cosh a,) - P (cosho)

xa’U(cosha — cosy) (cosho + cosy — 2)

Now
X 1 coshlo+ cos’xy —2 (cosho + cos x)?

P

" (cosha + co§x;'

(cosha + cosy - 2) (cosh & + cos X) - 2(cosho = 1)(cosy ~ 1)
(cosho + cosy)?

1
a(
X (cosho — cosy)
1
= i (cosh o — cos y) (cosh o + cosy —2)
+ terms of the 3rd and higher orders;
lience the most important part of the expansion is equal to
X o - ’
1a°U 75 S m (m+1) (m+2)
m=0
Q. (cosha) @', (coshe,)
2 * ml 0 _ an? m )
x ]:(m +2) £ (cosha,) " P’m(coshan)]
2 Q’mﬂ (Cosh ao)
P, (cosha,) *

This gives the moment of the donblet wlose potential is a
first approximation to the value of ¥ at infinity. The apparent

mass of the fluid may be found by means of & theorem due to
Munk,* and is

X »
=_%QGUR—’ = (2m+3) (m+1)"(m + 2)
m=0 -

2ra® , ]
PBI: :;ﬂ S (2m+3)(m+ 1)!(7)1+2):fM_1]’

m=0 alcosho)

* “ Notes on aerodynumic forces, T'ectinical Note No., 104, National Advisory
Committer for Aeronantics ", Washington, July, 1922,
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where Bis the volume of the fluid displaced by the solid, a p
the density of the fluid. Since

4 sh?
B=2T gpc0e [ _ 1,
3 sinlio cosl’a,

we find that the apparent mass is kpB, where k=.5 for the
sphere.  Wlhen

coshe,=1.2 we find %=.5688,
cosha,=2 ' =.548,
cosho, =3 » k=.5217.

A GEXNERAL FORM OF THE REMAINDER IN
TAYLOR'S THEOREM.
By G. §. Makajani, St. John’s College, Cambridge.

1. AN examination of the various extant accounts of
Taylor’s theorem reweals that, for the most part, they obtain
the particular form of the remainder with which they happen
to be concerned by utilising what we may call the stmple form
of the mean value theorem, which states that if S(z) is
continuous in the interval (a, &), end points included, and
differentiable in the same iuterval, end points not necessarily
inctuded, then

S@)=f(@)=(-a)f (&),
where £ is some number between a and 4 and not coinciding
with either.

Now it is well known that the mean value theorem can be

expressed in a form more general than the above. If ¢ ()
satisfies the same conditions as f(z) and, in addition, is such
that ¢'(z) does not vanish anywhere in (a, ), then

J®B=f(a) _f(&)
9)—¢(a) ¢'(&)’
where &, not necessarily the same as before, lies between a
and b aud does not coincide with either of them.
We propose to show that, by utilising this more general
form of the mean value theorem, we can obtain an extremely
general form of the remainder in Taylor’s theorem.

2. We suppose that /() satisfies the strict conditions of
order n+1 at a, being such that it and its first n41 derivatives
exist in some neighbourhood of a; and that ¢ () satishies

B,= 22— gay= ! (4 61)

(\

of the remainder in Taylor's theorem. 79

the conditions of order p+1 at q. Further, we suppose that
¢""'(x) does not vanish,

3. Let
S @D =f @+ (@) 4ot 2 (a) 4 B,
so that 22 is the usual remainder. LEvidently
B~/ @+ D =f @ =1 (@ meom & (). ),
4. Write now
@)=/ @4 B)-f (@) - (a4 hoz)f (@) ER2)

nl

Then, as is e;mily seen, -
’ ' ’ ( +’l— »
(@) ===

X (z)=— (rz+i-a:)"
p!

$7'(z).

5. By the mean value theorem in its general form,
Y@t =y (a) _ y(2)
x(a+h)-x(a) ~ x(E)’

where E lies between a and + % and coincides with neither.
In the usual way we Lave

E=a+ 04,
where 0<f<1.
Further, as is easily seen,

Y(a+h)=x(a+k)=0.

¥(@) _Y(a+6r) p! S (a+ OR)
x(@) " xa+ o) = nt BT G

6. But (1) and (2) give at once Y(a)=R,. Thus
X (a)

Thus

n

n! 9" (a+ 0h)

P e kOB ’
O O e {3 @}




